If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-5)=3x^2+3x-90
We move all terms to the left:
(x-5)-(3x^2+3x-90)=0
We get rid of parentheses
-3x^2+x-3x-5+90=0
We add all the numbers together, and all the variables
-3x^2-2x+85=0
a = -3; b = -2; c = +85;
Δ = b2-4ac
Δ = -22-4·(-3)·85
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-32}{2*-3}=\frac{-30}{-6} =+5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+32}{2*-3}=\frac{34}{-6} =-5+2/3 $
| (X-6)=3x^2+3x-90 | | (X+3)=3x^2+3x-90 | | Y=3x^2+3x-90 | | 3y-y=6 | | −12−12124=4(f−6) | | −12=4(f−6) | | x/12+2/3=5/3 | | 6x-16=3x-5 | | 4-5x/2=7x-4 | | F(x)=3x^+9x-7 | | G(z)=z-0.8/z^2-1.3z+0.42 | | 16b+8b=35-4b | | a÷6+2=10 | | 7p-2p+p-p=15 | | 6v+4v-8v+3v-3v=8 | | 6y-9=11 | | 6u-4u+3u-4u+3u=20 | | t÷6-4=11 | | a÷4+7=13 | | 3s+4s+3s-9s+4s=20 | | 9(k+4)-(8k-5)=2 | | 80-x20=8x-1 | | b-b+4b+b=10 | | 13-(2x-7)=5 | | 14b-6b+b=9 | | 11x-22x=0 | | 9(x-1)^2=13-9x | | 11x-5.5*4x=0 | | x-3=3/5x+6 | | 4v-2v=18 | | 11/4x=5,5/x | | 10p-9p=10 |